
Example 1) Consider a circuit of resistors R_1 , R_2 and R_3 whose values are 5 Ω , 10 Ω and 5 Ω respectively. Two cells E_1 and E_2 are connected in the circuits whose values are 10 V and 5 V respectively. Find the value of $i_1 - i_2$.

Solving the circuit by KCL and KVL

Consider the direction of current flow as indicated by arrows within the circuit. Now let us apply Kirchhoff's current law to the junctions B and E.

So current in the mesh EAB = $i_{1.}$

Current in the mesh BE = i_{2} .

Thus current in the mesh BCDE = $i_1 - i_2$.

Next we are applying Kirchhoff's voltage law on the mesh EAB. Here 10 V is considered in the clock wise direction.

 $5 i_{1+} 10 i_2 = 10$. Let it be the first equation.

Consider the next mesh EBCD in which 5 V is again in the clock wise direction.

5
$$(i_1 - i_2) - 10 i_2 = 5$$

5 $i_1 - 5 i_2 - 10 i_2 = 5$
5 $i_1 - 15 i_2 = 5$
Solving the two equations we get
5 $i_{1+} 10 i_2 = 10 - 10$

5 i_1 - 15 i_2 = 5 Then 10 i_2 - (- 15 i_2) = 5 10 $i_{2+} 15 i_2 = 5$ Thus 25 $i_2 = 5 i_2 = 5/25$ = 0.2 A Substitute this value in equation 1 we get $5 i_1 + 10 (0.2) = 10$ 5 $i_1 + 2 = 10 5 i_1 =$ 8 $i_1 = 8 / 5 = 1.6$ A Thus $i_1 = 1.6$ A and $i_2 = 0.2$ A

 $i_1 - i_2 = 1.6 - 0.2 = 1.4$ Amp.